§61.3

readily and when ignited burns so vigorously and persistently as to create a serious transportation, handling, or disposal hazard. Included are spontaneously combustible and water-reactive materials.

Site closure and stablization means those actions that are taken upon completion of operations that prepare the disposal site for custodial care and that assure that the disposal site will remain stable and will not need ongoing active maintenance.

State means any State, Territory, or possession of the United States, Puerto Rico, and the District of Columbia.

Stability means structural stabillity. Surveillance means observation of the disposal site for purposes of visual de-

tection of need for maintenance, custodial care, evidence of intrusion, and compliance with other license and regulatory requirements.

Tribal Governing Body means a Tribal organization as defined in the Indian Self-Determination and Education Assistance Act (25 U.S.C. 450).

Waste means those low-level radioactive wastes containing source, special nuclear, or byproduct material that are acceptable for disposal in a land disposal facility. For the purposes of this definition, low-level waste has the same meaning as in the Low-Level Waste Policy Act, that is, radioactive waste not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or byproduct material as defined in section 11e.(2) of the Atomic Energy Act (uranium or thorium tailings and waste).

[47 FR 57463, Dec. 27, 1982, as amended at 54 FR 22583, May 25, 1989; 58 FR 33891, June 22, 1993; 66 FR 55792, Nov. 2, 2001]

§61.3 License required.

(a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a license issued by the Commission pursuant to this part, or unless exemption has been granted by the Commission under §61.6 of this part.

(b) Each person shall file an application with the Commission and obtain a license as provided in this part before commencing construction of a land disposal facility. Failure to comply with this requirement may be grounds for denial of a license.

§61.4 Communications.

Except where otherwise specified, all communications and reports concerning the regulations in this part and applications filed under them should be sent by mail addressed: ATTN: Document Čontrol Desk; Director, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; by hand delivery to the NRC's Offices at 11555 Rockville Pike, Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic Information Exchange, or CD-ROM. Electronic submissions must be made in a manner that enables the NRC to receive, read, authenticate, distribute, and archive the submission, and process and retrieve it a single page at a time. Detailed guidance on making electronic submissions can be obtained by visiting the NRC's Web http://www.nrc.gov/site-help/ eie.html, by calling (301) 415-6030, by email to EIE@nrc.gov, or by writing the Office of the Chief Information Officer, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the formats the NRC can accept, the use of electronic signatures, and the treatment of nonpublic information.

[68 FR 58814, Oct. 10, 2003]

§61.5 Interpretations.

Except as specifically authorized by the Commission in writing, no interpretation of the meaning of the regulations in this part by any officer or employee of the Commission other than a written interpretation by the General Counsel will be considered binding upon the Commission.

§ 61.6 Exemptions.

The Commission may, upon application by any interested person, or upon its own initiative, grant any exemption from the requirements of the regulations in this part as it determines is authorized by law, will not endanger life or property or the common defense

and security, and is otherwise in the public interest.

§61.7 Concepts.

(a) The disposal facility. (1) Part 61 is intended to apply to land disposal of radioactive waste and not to other methods such as sea or extraterrestrial disposal. Part 61 contains procedural requirements and performance objectives applicable to any method of land disposal. It contains specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal, which involves disposal in the uppermost portion of the earth, approximately 30 meters. Near-surface disposal includes disposal in engineered facilities which may be built totally or partially above-grade provided that such facilities have protective earthen covers. Near-surface disposal does not include disposal facilities which are partially or fully above-grade with no protective earthen cover, which are referred to as "above-ground disposal." Burial deeper than 30 meters may also be satisfactory. Technical requirements for alternative methods may be added in the future.

(2) Near-surface disposal of radioactive waste takes place at a near-surface disposal facility, which includes all of the land and buildings necessary to carry out the disposal. The disposal site is that portion of the facility which is used for disposal of waste and consists of disposal units and a buffer zone. A disposal unit is a discrete portion of the disposal site into which waste is placed for disposal. For nearsurface disposal, the disposal unit is usually a trench. A buffer zone is a portion of the disposal site that is controlled by the licensee and that lies under the site and between the boundary of the disposal site and any disposal unit. It provides controlled space establish monitoring locations which are intended to provide an early warning of radionuclide movement, and to take mitigative measures if needed. In choosing a disposal site, site characteristics should be considered in terms of the indefinite future and evaluated for at least a 500-year timeframe.

(b) Waste classification and near-surface disposal. (1) Disposal of radioactive waste in near-surface disposal facilities

has the following safety objectives: protection of the general population from releases of radioactivity, protection of individuals from inadvertent intrusion, and protection of individuals during operations. A fourth objective is to ensure stability of the site after closure.

(2) A cornerstone of the system is stability-stability of the waste and the disposal site so that once emplaced and covered, the access of water to the waste can be minimized. Migration of radionuclides is thus minimized, longterm active maintenance can be avoided, and potential exposures to intruders reduced. While stability is a desirable characteristic for all waste much radioactive waste does not contain sufficient amounts of radionuclides to be of great concern from these standpoints; this waste, however, tends to be unstable, such as ordinary trash type wastes. If mixed with the higher activity waste, their deterioration could lead to failure of the system and permit water to penetrate the disposal unit and cause problems with the higher activity waste. Therefore, in order to avoid placing requirements for a stable waste form on relatively innocuous waste, these wastes have been classed as Class A waste. The Class A waste will be disposed of in separate disposal units at the disposal site. However, Class A waste that is stable may be mixed with other classes of waste. Those higher activity wastes that should be stable for proper disposal are classed as Class B and C waste. To the extent that it is practicable, Class B and C waste forms or containers should be designed to be stable, i.e., maintain gross physical properties and identity, over 300 years. For certain radionuclides prone to migration, a maximum disposal site inventory based on the characteristics of the disposal site may be established to limit potential exposure.

(3) It is possible but unlikely that persons might occupy the site in the future and engage in normal pursuits without knowing that they were receiving radiation exposure. These persons are referred to as inadvertent intruders. Protection of such intruders can involve two principal controls: institutional control over the site after